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In this Note we provide an example that corrects the statement made in the last
sentence of Remark 1.3 of [1].

Example. With all notation as in [1], let K denote the first measurable cardinal. For
all » <K, let us take the boolean algebra B, to be #(«r). In this set-up, there exists
a #-complete non-principal ultrafilter # over K such that the ultraproduct .% =
1.« Bo/ 7 is #(K), the power set of K, and hence complete.

Such an ultrafilter is called normal.

Let us observe that the degree of completeness of # is K, that the cardinality of
B, approaches K since K as a measurable cardinal is not accessible and therefore
is the limit of the a’s, < K, and yet the ultraproduct is complete.

The key result needed to verify the completeness of .4 is as follows: If one has
a countably complete ultrafilter of degree of completeness K, then every subset of
the ultraproduct of cardinality at most K is the universe of some ultraproduct of
sets.

“-e normality of # gives the fact that .# has exactly K atoms.

. ne reader can consult [2] for the above mentioned results about measurable
cardinals.
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