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In this Note we provide an example that corrects the statement made in the last 
sentence of Remark 1.3 of [1]. 

Example. With all notat ion as in [1], let K denote the first measurable cardinal. For 
al~ :- < K, let us take the boolean algebra Ba to be ~(a) .  In this set-up, there exists 
a X-complete non-principal ultrafilter q/ over K such that the ultraproduct .~ = 
1]~<~.Ba/'/1' is :¢(K), the power set of  K, and hence complete. 

Such an ultrafilter is called normal. 
Let us observe that  the degree of  completeness of ~# is K, that the cardinality of 

B~ approaches K since K as a measurable cardinal is not accessible and therefore 
is the limit of the a 's ,  a<K,  and yet the ultraproduct is complete. 

The key result needed to verify the completeness of  ,~ is as follows: If one has 
a countably complete ultrafilter of  degree of completeness K, then every subset of  
the ultraproduct o f  cardinality at most K is the universe of some ultraproduct of  
set~_. 

-~'e normality of  ¢/ gives the fact that ,~ has exactly K atoms. 
.~e reader can consult [2] for the above mentioned results about measurable 

cardinals. 
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